Ano VII - 2007/2013 - BLOG FENÔMENOS SOBRENATURAIS - Developed by IVSON DE MORAES ALEXANDRE - VOLTA REDONDA - ESTADO DO RIO DE JANEIRO - BRASIL.
Seja bem-vindo. Hoje é

quinta-feira, 16 de abril de 2009

Velocidade da Luz

Histórico
Os antigos pensavam que a luz tinha velocidade infinita, achando que ela poderia percorrer qualquer distância, por maior que fosse, sem gastar nenhum tempo para isso. Talvez o primeiro a tentar medir a velocidade da luz tenha sido Galileu. Tentou mas não conseguiu, com os meios que dispunha, porque a luz é rápida demais. No tempo que você leva para piscar os olhos ela já percorreu a distância do Oiapoque ao Xuí. Hoje todo mundo sabe que a velocidade da luz é aproximadamente 300.000 quilômetros por segundo. Um valor muito bem conhecido e certamente um dos melhor determinado em todo campo de fenômenos físicos é a velocidade com que a luz se propaga. Além disso, esta constante é uma das de maior importância em toda teoria física. A obtenção da velocidade da luz teoricamente, é feita a partir do mesmo conceito básico que se usa para chegar até a velocidade de propagaçào de uma onda mecânica, ou seja, aceitando que a luz é uma onda. A diferença é que a luz não necessita de um meio material para se propagar, embora ela também se propague em meios materiais.

As primeiras medidas da velocidade da luz
A história da busca de seu valor é natruralmente tão velha quanto a própria ciência. Empédocles foi o primeiro a sugerir que a luz requeria provavelmente um tempo finito para passar entre dois pontos. Galileu foi o primeiro a propor um método para tentar medi-la. A sugestão de Galileu era colocar, o mais afastado possível um do outro, dois homens com lanternas que podiam acender e apagar. Um deles A, descobria sua lanterna, de modo que o outro B, pudesse vê-la. Por sua vez B, descobria a sua no instante em que ele visse a luz de A, e A media o tempo entre descobrir sua lanterna e enchergar a luz de B. Certamente a experiência falhou porque o tempo de reação dos dois indivíduos era grande e também havia variações maiores do que o tempo necessário para a luz percorrer os poucos quilômetros entre os dois observadores, que é de 10-5 s.



Medidas Astronômicas da velocidade da luz
Em 1675 Rømer, astrônomo dinamarquês, fez a primeira medida utilizando uma distância astronômica em vez de terrestre. Ele observou que os eclipses do primeiro satélite de Júpiter ocorriam em intervalos ligeiramente menores menores à medida que a terra se aproximava de Júpiter, de C para A; do que quando ele se afastava de Jupiter, de A para C. Desde que o tempo entre os eclipses, tirada a média durante um ano, era bem constante (apesar do ganho total de 16’26” em 6 meses, seguido de uma perda do mesmo valor por mais 6 meses), Rømer interpretou corretamente o ganho ou a perda como sendo o tempo necessário para os sinais luminosos do eclipse atravessarem o diâmetro da órbita terrestre. Então, como o diâmetro médio da terra é de 302,4 x 106 km, e o tempo de 986 s, ele calculou a velocidade da luz como sendo de 307.200 km/s.
Método de Roemer para a medida da velocidade da luz. O intervalo de tempo entre os eclipses da lua de Júpiter parece maior quando a terra desloca de A para C do que quando ela se move de C para A. A diferença se deve ao tempo que a luz leva para percorrer a distância coberta pela Terra, durante um período de revolução do satélite.
Uma Segunda determinação apareceu por um método completamente diferente, feita em 1729 pelo astrônomo inglês Bradley. Ele evidenciou que a posição de uma estrela, observada de uma direção em ângulo reto com o movimento orbital da terra, é deslocada de sua verdadeira posição por um ângulo de 20,44 segundos de arco, que é chamado de ângulo de aberração, e resulta do fato de que enquanto a luz esta caminhando para o tubo do telescópio, este é deslocado pelo movimento da terra, de uma distância não totalmente desprezível. Nota-se que tg a = v/c onde v é a velocidade da terra e c é a velocidade da luz.

O primeiro método de laboratório para medida da velocidade da luz em distâncias terrestres foi feito pelo francês Fizeau em 1849. Ele usou uma grande roda dentada girando rapidamente em frente a uma fonte brilhante que funcionava da seguinte forma:
A luz emitida por uma fonte S, atravessa a lente convergente L1, é refletida pelo espelho semi-transparente M1 e forma, no espaço, em S1 uma imagem da fonte. O espelho M1 foi coberto com uma película muito fina dando a ele uma propriedade de ser semi-espelhado, isto é a metade da luz que chega nele é refletida e a outra metade é transmitida. A luz, proveniente da imagem S1, penetra na lente L2 e emerge do lado oposto com um feixe paralelo. Após passar pela lente L3, é refletida pelo espelho M de volta, em sentido contrário, mas a sua direção original. No experimento de Fizeau, a distância d entre a imagem S1 e o espelho M foi de 8.630 m. Quando a luz atinge, novamente, o espelho M1 parte dela é transmitida, indo até o olho do observador, após atravessar a lente convergente L4. Assim, o observador verá uma imagem da fonte S1 formada por luz que terá percorrido uma distância 2d, de ida e volta entre a roda e o espelho M.



Experimento de Fizeau
É obvio que o método de Fizeau era certamente uma adaptação altamente mecanizada do método proposto por Galileu. Na experiência de Fizeau a luz, durante o percurso discutido acima, passa por uma roda dentada R1. Se esta roda gira lentamente, a imagem vista pelo observador será intermitente. A medida que sua velocidade aumenta a imagem formada no olho do observador diminui as interrupções. Contudo, podemos ir aumentando a freqüência de rotação da roda até que nenhuma imagem seja formada no olho do observador. Isto ocorrerá quando o tempo gasto pela luz para percorrer a distância 2d for igual ao tempo gasto para girar a fenda de um ângulo equivalente ao ângulo entre dois dentes consecutivos da roda dentada. Sendo isto possível, podemos encontrar uma relação matemática para calcular a velocidade da luz, isto é, o tempo t gasto para a luz percorrer a distância 2d é igual a t = 2d/c. Por outro lado, o tempo t gasto para girar a roda dentada de um ângulo a , pode ser calculado usando a frequência angular da roda; comparando as duas equações para o tempo, temos que 2d/c = 1/2NV sendo N o número de dentes e se a roda dá V voltas por segundo. Como conhecemos os valores de d, a e v, podemos facilmente calcular a velocidade da luz. No primeiro experimento realizado por Fizeau, a roda tinha 720 dentes, v = 12,609 rps, d = 8.630m e o ângulo a = 1/1.440 de rotação. Com isto ele obteve, para a velocidade da luz, o valor de c = 313.300 km/s. Numa segunda tentativa ele melhorou os seus resultados, encontrando c = 301.400 km/s, resultados estes considerados, na época, de grande precisão.
Cornu, que melhorou os detalhes de Fizeau, obteve em 1876 um valor que corrigido era de 299.950 km/s (no vácuo).
Qual é exatamente a velocidade da luz?
Uma medida da velocidade da luz usando lasers, feita pelo Bureau Nacional de Padrões dos Estados Unidos, em 1983, obteve como resultado, 299.792,4586 Km/s, com incerteza de mais ou menos 0,0003 Km/s.
A partir do ano de 1983, por decisão dos órgãos científicos internacionais, a velocidade da luz passou a ser considerada uma constante universal com valor bem determinado, exatamente igual a:
C = 299.792.458 m/s



Relatividade especial e a velocidade da luz
De acordo com a mecânica Newtoniana, não há, em princípio, um limite superior para a velocidade imposta a um corpo. Imaginemos um corpo constantemente sujeito à aceleração da gravidade (g = 9,8 m/s2). Partindo do repouso, após um ano sua velocidade seria igual à velocidade da luz no vácuo, e após dois anos, seria o dobro desta velocidade. assim a velocidade atingida parece ser ilimitada. Mas, quando tentamos obter velocidades tão altas quanto a da luz, observamos um desvio da mecânica newtoniana, sendo esta não adequada à todas as situações.
No contexto da Relatividade Especial, a velocidade da luz é o limite absoluto da velocidade em nosso universo para qualquer objeto que contenha massa real. Isto ocorre porque quando um corpo se aproxima da velocidade da luz, mais e mais da energia fornecida ao corpo aparece sob a forma de massa adicional. Assim, quanto mais rápido o corpo, mais a energia cinética envolvida no movimento tem como efeito principal causar um aumento em sua massa-energia em lugar de velocidade, sendo que a massa-energia vai ao infinito nos limites da velocidade da luz. A síntese disto está expresso em uma das mais importantes equações da física, proposta por Albert Einstein:
E = m*c2



Albert Einstein
"A velocidade da luz em qualquer sistema de referência tem o mesmo valor, independente do movimento do referencial".



Velocidade da Luz no televisor
Objetivo
Medir a velocidade de uma onda eletromagnética usando um televisor.
Descrição
Ligue um televisor, de preferência preto-e-branco, dos antigos, com antena interna e dirija essa antena na direção da antena da emissora. Coloque uma placa grande de metal na mesma linha que as antenas, ficando a antena interna entre a placa e a antena da emissora. Vá afastando a placa, mantendo-a perpendicular à linha das antenas, e observe a imagem. Para uma dada distância a imagem se deteriora visivelmente. Afastando um pouco mais, a imagem volta melhorar. Afastando mais um pouco, novamente, a imagem piora. Anote as distâncias em que a imagem se deteriora. O comprimento de onda do sinal da emissora será dado por 2xL/n, onde L é a distância entre a placa e a antena interna; n é ordem da posição onde a imagem fica ruim, isto é, n=0,1,2, etc. Com esses valores, acha-se uma média para o comprimento de onda. Multiplicando esse comprimento de onda pela freqüência do sinal da emissora, obtém-se a velocidade da onda, que é a velocidade da luz.



Análise
O comprimento de onda dos sinais de televisão é sempre da ordem de poucos metros. Sendo L esse comprimento, a velocidade da onda é dada por c = Lf, onde f é a frequência da onda. O televisor recebe dois sinais: o sinal vindo da emissora e o sinal refletido na placa de metal. Quando a distância entre a antena interna e a placa é um número inteiro de meios comprimentos de onda dá-se interferência destrutiva e a imagem se deteriora.Material
Televisor, de preferência velho e preto e branco. Televisores coloridos mais modernos costumam ter um circuito que ajusta a freqüência de sintonia automaticamente. Isso é muito bom para o telespectador normal, mas, péssimo para sua experiência pois você quer exatamente deteriorar a imagem por interferência. Placa metálica razoavelmente grande (1 metro quadrado ou mais).Antena interna.



Dicas
A placa metálica pode ser uma meia-folha de compensado coberta de papel alumínio. Use o ajuste fino do televisor para dessintonizar ligeiramente a recepção do sinal. Isso facilita a determinação dos pontos de mínimo evitando que o circuito de sintonia automática atrapalhe a observaç Obtenha o valor da frequência da emissora telefonando para lá e perguntando. Faça isso com mais de uma emissora para medir com mais de um valor de frequência. Mas, não esqueça que cada emissora pode ter uma posição diferente de suas antenas.
Fonte: educar.sc.usp.br

Nenhum comentário: